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A B S T R A C T

The proper management of renal lithiasis presents a challenge, with the recurrence rate of the disease being as
high as 46%. To prevent recurrence, the first step is the accurate categorization of the discarded renal calculi.
Currently, the discarded renal calculi type is determined with the X-ray powder diffraction method which re-
quires a cumbersome sample preparation. This work presents a new approach that can enable fast and accurate
classification of discarded renal calculi with minimal sample preparation requirements. To do so, first, the
measurements of the dielectric properties of naturally formed renal calculi are collected with the open-ended
contact probe technique between 500MHz and 6 GHz with 100MHz intervals. Cole–Cole parameters are fitted to
the measured dielectric properties with the generalized Newton–Raphson method. The renal calculi types are
classified based on their Cole–Cole parameters as calcium oxalate, cystine, or struvite. The classification is
performed using k-nearest neighbors (kNN) machine learning algorithm with the 10 nearest neighbors, where
accuracy as high as 98.17% is achieved.

1. Introduction

Renal lithiasis, defined as the biomineralization of the urinary
system, affects 14% of the population globally [1,2]. The disease has to
be well managed to prevent recurrence, which has been reported to be
as high as 46% in five-year follow-up patient studies [3]. Prevention of
disease recurrence is possible via proper medication and dietary re-
strictions. However, to designate the appropriate prescription, the renal
calculi types should be determined by analyzing the discarded material.
There are four major renal calculi types: calcium oxalate (CaOx), cy-
stine, struvite, and uric acid. Types of renal calculi can be determined
based on physical and chemical features, and several methods of de-
termining the types have been proposed in the literature. Commercial
kits measuring the ionic conductivity of samples can be used to de-
termine renal calculi types in a laboratory environment, but while the
commercial kits are affordable, the method requires long processing
times and cannot differentiate the compounds in a sample [4]. The type
of renal calculi can also be determined through a material's reaction to
heat using the thermogravimetric method. However, the sensitivity of
this method is not adequate, and it permanently damages the discarded
renal calculi sample [5,6]. Another method is polarised microscopy,

where sample fragments are examined by adding a refractive index li-
quid. The drawback of this method is the inability to perform compo-
nent distinction; therefore, this method suffers from low accuracy rates
[7]. Infrared radiation has also been investigated to determine renal
calculi type, but the results of a study were inconclusive due to a si-
milarity to the absorbance range of some stone types [8]. X-ray powder
diffraction method is widely used because of the unique diffraction
patterns of the different renal calculi types [9,10]. However, this
method requires cumbersome sample preparation as well as a trained
radiologist. Considering the high cost, difficulty of application, low
efficacy, and low sensitivity of the listed methods, it is clear that there is
a need for new modalities to classify the stones. One such technique,
recently proposed by Ref. [11], collects pictures of the renal calculi
samples with a standard camera, and a random forest classifier is em-
ployed to categorize the renal calculi based on the color and texture of
the samples. The obtained accuracies ranged from 63% to 83%, helping
to prove that machine learning algorithms can be effectively utilized for
classification of renal calculi, and the accuracy can be increased with
data collection. Nevertheless, visual examination may not reveal en-
ough information regarding the molecular structure of renal calculi.
This factor may contribute to relatively low accuracy rates because
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samples with similar appearances may have different molecular struc-
tures.

One other approach that has not been explored in the literature is
the employment of dielectric properties for classification of the dis-
carded renal calculi. Dielectric properties are associated with the mo-
lecular structure of a material, and it governs the interactions between
electromagnetic waves and materials. Thus, the dielectric properties of
a medium can be determined by analyzing the electromagnetic wave
behavior in that medium. In order to exploit potential microwave di-
agnostic and therapeutic technologies, researchers have performed ex-
tensive microwave dielectric property analysis on different biological
tissues and biomaterials [18–20]. However, microwave dielectric
properties of renal calculi have not been fully explored in the literature.
Reported studies mostly cover the low frequencies and require ma-
chining of the renal calculi. These studies are performed with the mo-
tivation of providing insight into the disease pathogenesis in order to
develop new treatment techniques. In Ref. [13], the dielectric proper-
ties of the grown struvite crystal were studied at low frequencies to
investigate the potential for heat dissipation leading to the disintegra-
tion of the renal calculi. In Ref. [14], an evaluation of the stress effect
on renal calculi phantoms was studied in five phantom categories. In
Ref. [15], the dielectric properties of calcium oxalate grown in silica gel
were reported in order to reveal pathogenesis of renal calculi [16].
investigated the growth mechanism of renal calculi by interpreting the
dielectric constant via X-ray diffraction (XRD) analysis. In Ref. [17], the
microwave cavity perturbation technique was used to collect and
compare the dielectric properties of in-vitro and naturally formed
stones. However, the reported dielectric properties only cover a narrow
band and the study only analyzed a small number of samples. Reported
studies on dielectric properties of renal calculi are listed in Table 1,
where the listed studies performed below 1.5MHz employed parallel
plate technique to measure the dielectric properties.

This study proposed to employ the open-ended coaxial probe tech-
nique to collect dielectric property measurements. In comparison to the
techniques previously employed in studies, the open-ended coaxial
probe technique requires minimal sample preparation (e.g., machining
of the sample is not required) and is able to perform broadband di-
electric property measurement. In this work, dielectric properties of
samples belonging to three different renal calculi types of calcium ox-
alate, cystine, and struvite were measured between 500MHz and
6 GHz. One pole Cole–Cole equations, a mathematical expression fre-
quently used for expressing the dielectric property behavior of biolo-
gical tissues over wide frequency ranges, were fitted to the measure-
ments, and the parameters of the Cole–Cole equations were used as
features for the k-nearest neighbors algorithm. The algorithm was then
utilized for determining the class of renal calculi samples. The pro-
mising results indicated that the technique can be employed for rapid
determination of discarded renal calculi types to enable the necessary
measures for prevention of the disease.

This paper is organized as follows: dielectric property measurement
and the machine learning algorithm are explained in Section 2. The
sample preparation and dielectric property measurement setup are
given in Section 3. The dielectric property measurements are provided
in Section 5.1, and the kNN algorithm results are given in Section 5.3.

Finally, the conclusions drawn are discussed in Section 7.

2. Background

The microwave dielectric properties, namely permittivity and con-
ductivity have been widely used to exploit the diagnostic and ther-
apeutic potential of microwaves. This is enabled by the inherent di-
electric property discrepancy between healthy and abnormal tissues.
Although the dielectric properties of many different biological tissues
and biological anomalies have been widely reported in the literature,
there are very few reported studies on the microwave dielectric prop-
erty behavior of renal calculi. This work explored the inherent dielectric
property discrepancy between different renal calculi types and
exploited this property to classify the discarded samples by utilizing a
machine learning algorithm. In this section, we first emphasize the
significance of the open-ended coaxial probe dielectric property mea-
surement method and explain the features that were given as inputs to
the kNN algorithm. Both the open-ended coaxial probe technique and
the kNN algorithm are explained in great length in the literature; thus,
both topics are discussed only briefly in this work.

2.1. Open-ended coaxial probe technique

Dielectric properties of biomaterials have been widely investigated
to enable the advancements in microwave diagnostic and therapeutic
technologies. Different techniques have been used for measurement of
dielectric properties, including resonant cavity perturbation, parallel
plate, free space, waveguide, and the open-ended coaxial probes.
Choosing the proper technique depends on the frequency, material
properties, and application requirements. For example, the parallel
plate technique is suitable for low-frequency measurements and re-
quires heavy machining of the sample. Similarly, the cavity perturba-
tion technique can only perform narrowband measurements, and the
sample needs to be heavily machined. On the other hand, the open-
ended coaxial probe technique is simple to operate, does not require
machining of the sample, and is able to perform broadband measure-
ments [21]. The technique is mostly used for dielectric property mea-
surements of biological materials with high permittivity and loss. De-
spite all the advantages, the technique is only utilized in laboratory
environments, and multiple measurements from one sample are re-
quired due to high error and low measurement repeatability rates.

Advantages of the technique make it attractive for using to measure
renal calculi dielectric properties. In this study, we aimed to eliminate
the heavy machining of the sample, and the disadvantages of the
technique were mitigated via the machine learning algorithm.
Therefore, this study enables the classification of renal calculi with a
single dielectric property measurement. In addition, the discarded renal
calculi sample will not be destroyed and can be used for further pro-
cessing.

One important requirement of this technique is to place the aperture
of the probe on the sample under test without leaving an air gap. To
provide direct contact, all renal calculi samples, which tend to have
rough surface, were sanded to make their surfaces smoother. The open-
ended coaxial probe measurement system used in this study consisted of
a vector network analyzer (VNA) commercial software to calculate di-
electric properties, and a coaxial probe kit, as shown in Fig. 1.

VNA essentially consists of a signal source, a receiver, and a display.
VNA is used for measuring microwave network parameters; that is,
scattering parameters (S-parameters). The source transmits the signal to
the renal calculi through a coaxial probe, and the receiver measures the
signal reflected back to the probe from the sample. After obtaining S-
parameters, dielectric constant and dielectric loss values of each stone
have been computed over the frequency range of 500MHz to 6 GHz
with 100MHz intervals by the commercial software.

Table 1
Summary of previously reported studies on renal calculi dielectric properties.

Study Frequency Temperature (°C) Type

[12] 10 kHz–1.5MHz N/A Natural stones (solid and
powdered)

[13] 1 kHz–1MHz 30–80 Single diffusion gel
[14] 1 Hz–1MHz R.T. Phantoms
[15] 100 kHz–1MHz 40–110 Silica gel
[16] 1 Hz–1MHz 40–100 Natural stones (powdered)
[17] 2.2 GHz–2.9 GHz N/A Natural stones and crystals grown
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2.2. Machine learning algorithm: the k-nearest neighbors (kNN)

Predictive or descriptive machine learning algorithms have been
applied to solve many different problems, including but not limited to
data mining, natural language processing, image recognition, and ex-
pert systems. Machine learning algorithms are known to be particularly
effective when the exact relationship between inputs and outputs of a
process are not apparent. Machine learning, a subfield of artificial in-
telligence, refers to the computer's ability to learn from training data or
past experiences and successfully generalize the model to a test set. In
machine learning algorithms, data can be processed with supervised or
unsupervised learning approaches. Both inputs and their corresponding
outputs are used in supervised machine learning algorithms, while
unsupervised ones utilize only inputs to train the algorithm.
Considering this description, the type of machine learning algorithm is
determined by input types, the presence of outputs, and desired out-
puts. For classification of renal calculi, supervised machine learning
models such as support vector machine (SVM), artificial neural network
(ANN), k-nearest neighbors (kNN)and other supervised learning algo-
rithms, can be used since both the inputs and the outputs of the training
set are known.

In Ref. [22], negligible differences were observed between the SVM
and kNN algorithms with data sets that had few or moderate number of
features. However, SVM aims to find the best classification function to
discriminate the samples of two classes in the training set. Since it is a
binary classifier, it needs to be modified for a multi-class problem [23].
In the study conducted by Ref. [24], cumulative error performances of
machine learning algorithms were analyzed with respect to sample size.
According to the study, the kNN algorithm showed better performance
for data sets that were closest to our sample size. As a consequence, the
kNN algorithm was preferred for the present study in order to decrease
the complexity and improve the performance of classification.

The kNN algorithm works by categorizing data via correlating in-
puts to similar outputs. In a sense, as the algorithm confronts unknown
data, it investigates similar instances from the training set. Two design
parameters – the number of nearest neighbors, k, and the distance be-
tween data points – were adjusted while developing the kNN model.
The distance could be calculated with Euclidean distance, Manhattan
distance, or Minkowski distance relations. To train the model, data in
the training set were positioned on a coordinate system that is com-
patible with the data dimensions. During the testing stage, unknown
data were placed into same coordinate system to specify the kNN. The
class of unknown data, then, was estimated from the majority classes of

neighbors.

3. Experiments

A detailed work on the dielectric properties of three renal calculi
categories, calcium oxalate, cystine, and struvite, was carried out for
classification. Additionally, another study was performed by the au-
thors on the dielectric properties of renal calculi with a limited number
of samples covering the frequency range of 0.5 GHz–18 GHz [25].
Complex permittivity data composed of dielectric constant ( ′ε ) and di-
electric loss factor ′′ε were obtained via the open-ended coaxial probe
technique, which is widely used to measure broadband dielectric
properties of biomaterials in a laboratory environment. The properties
of the renal calculi samples, the experimental setup, and the classifi-
cation procedures used are detailed in the following sections.

3.1. Samples

A total of 105 naturally occurring renal calculi samples were ob-
tained from the Department of Urology, Cerrahpasa Medical School.
The renal calculi samples were gathered from 40 patients by utilizing
various treatment methods including percutaneous nephrolithotomy
(PCNL). The samples obtained were sorted into two groups, where the
first group included a total of 49 samples with 21 calcium oxalate, 7
cystine, and 11 struvite renal calculi samples. The second group in-
cluded a total of 66 samples with 14 calcium oxalate, 28 cystine, and 24
struvite renal calculi samples. While the obtained number of renal
calculi samples was greater than 105, some of the samples were
eliminated in both measurement periods due to their small dimensions.
The radius of measured samples used ranged from 2.5 mm to 10mm.
Pictures from the obtained renal calculi samples are shown in Fig. 2.
The sample preparation was minimally laborious compared to other
methodologies. Since the aperture of the probe has to be fully in contact
with the material being tested, the surfaces of the renal calculi samples
were sanded lightly to obtain a flat surface.

3.2. Experimental setup

The dielectric properties of the renal calculi samples were measured
using a slim-form open-ended coaxial probe with an aperture size of
2.2 mm. The S-parameters were measured with an Agilent N5245A
PNA-X Microwave Network Analyzer (shown in Fig. 1). The PNA-X was
connected to the probe with a 50 Ω RF-cable. Both the VNA and the

Fig. 1. The open-ended coaxial probe set-up for dielectric property measurement.
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open-ended coaxial probe have characteristic impedance of 50 Ω as
well, which ensures impedance matching. The impedance of the open-
ended coaxial probe was determined by the diameters of the inner and
outer conductors and the relative permittivity of the dielectric material
sandwiched between them. The probe utilized in this work had an outer
conductor diameter of 2.2mm and an inner conductor diameter of
0.6 mm, and the material between the concentric conductors was Te-
flon. The VNA was also connected via local area network (LAN) to a
notebook computer, where a commercially available Agilent 85070E
software was used for converting the scattering parameters to material
dielectric properties.

3.3. Measurement procedure

Before starting the measurement process, the slim-form dielectric
probe was calibrated by implementing the standard open, short, and
deionizedwater calibration procedure. After performing the calibration,
complex permittivity measurements of pure methanol were collected to
validate the calibration. Then the probe aperture was pressed against
the flat surface of the renal calculi sample, ensuring that the probe tip
was fully in contact with the sample. At least five measurements were
obtained from different points on each sample surface whenever ap-
propriate. The measurements were taken between 500MHz and 6 GHz,
with 100MHz intervals.

4. Methods

Measured dielectric properties are expressed with Cole–Cole equa-
tion. First, the median of measurements collected from each sample was
calculated. Next, the Cole–Cole parameters were fitted to the median
dielectric property data.

4.1. Measured wideband dielectric property analysis

In the literature, dielectric properties of biological materials are

widely represented with a Cole–Cole model formulated as follows [26]:
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where ′ε is the dielectric constant, ′′ε is the dielectric loss factor, ∞ε and
εs are dielectric constants measured at higher and lower frequencies,
respectively, w is angular frequency, τ is relaxation time, α is the dis-
tribution of relaxation time, and σs is the ionic conductivity of the
sample. The terms, ∞ε , εs, τ, α, and σs, are called Cole–Cole parameters.

In this study, by substituting measured ′ε and ′′ε values of renal
calculi samples in a 500MHz to 6 GHz frequency range into (1), an
equation with five unknown Cole–Cole parameters was obtained at
each measurement frequency point for a single stone. In order to find
the Cole–Cole parameters, the equation set of each sample was solved
by the generalized Newton–Raphson (GNR) method, which is a nu-
merical method making use of the partial derivatives of the equation.
The error in GNR is defined as the Euclidean distance of the calculated
data to the measured data given in (2):
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where ′εwi and ′′εwi are the measured dielectric properties obtained with
the open-ended coaxial probe technique and ′ε̂wi and ′′ε̂wi are calculated
dielectric properties. In this work, these dielectric properties were
calculated with the Cole–Cole equation to evaluate the performance of
the suggested Cole–Cole parameters. Last, N is the number of points
used within the frequency range of 0.5 GHz–6 GHz [27]. N was set at 56
in this study, which is the number of points at the measured frequency
of interest. The calculated Cole–Cole parameters were saved to use as
inputs for the classification algorithm. The iterative process stops when
the algorithm finds the first Euclidean distance below a determined
threshold and picks the Cole–Cole parameters that result in a minimum
Euclidean distance. Note that the threshold picked in this study was
0.05.

4.2. Classification of renal calculi samples

Renal calculi samples were categorized using the kNN algorithm,
where the calculated Cole–Cole parameters were given as inputs to the
classification algorithm. In the first stage, input vectors were normal-
ized in the range of (−1, 1) since normalization allows faster con-
vergence during training. After normalization, the data were divided
into training and testing sets by applying 10 fold cross-validation. In
this method, the data set was split into 10 equal folds. During each
round, the data in nine folds were used for training, and the remaining
fold was used for testing. A fair test of validation for limited sample size
can be obtained with 10 fold cross-validation by using features for both
training and testing.

In our renal calculi classifier, k was set to 10 because it is a common
practice to set the k parameter equal to the square root of the number of
training samples [28]. The distance parameter chosen was Euclidean
distance. By utilizing these parameters, the kNN model was then
trained and tested. The performance of the kNN model was calculated
with a two-by-two confusion matrix consisting of true positive (tp),
false positive (fp), false negative (fn), and true negative (tn) counts in
the classification. In this study, accuracy, sensitivity, specificity, pre-
cision, recall, and F1 score performance measures were calculated from
confusion matrices and used to evaluate the model.

5. Results

Section 5.1 reports the dielectric measurement results for the renal
calculi samples, the Cole–Cole fitting results for the dielectric properties
are given in Section 5.2, and Section 5.3 describes the renal calculi
classification results using kNN.

Fig. 2. Some of the renal calculi samples utilized for dielectric property mea-
surements, (a) a portion of the calcium oxalate samples, (b) a portion of the
cystine samples, (c) a portion of the struvite samples, (d) a cystine sample.
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5.1. Dielectric measurement results of renal calculi samples

The median dielectric properties of the renal calculi samples that
were calculated from measurements collected with the open-ended
coaxial probe are represented with variability bars in Fig. 3 (a) and
Fig. 3(b). To better emphasize the dielectric property discrepancy be-
tween stone types, the median permittivity and conductivity values of
calcium oxalate, cystine, and struvite samples are given in Table 2 at six
different frequency points. Medians of the measured relative permit-
tivity of calcium oxalate, cystine, and struvite between 1 GHz and
6 GHz were ranges of, respectively, 2.28 to 2.35, 2.17 to 2.63 and 3.16
to 3.38. The median conductivity of calcium oxalate, cystine, and

struvite between 0.5 GHz and 6 GHz were ranges of, respectively,
0.45x10-2 (S −m 1) to 1.6x10-2 (S −m 1), 0.19x10-1 (S −m 1) to 1.5x10-1 (S

−m 1), and 2.0x10-2 (S −m 1) to 3.5x10-2 (S −m 1). The permittivity dis-
crepancy between renal calculi types tends to decrease with increasing
frequency, whereas the conductivity discrepancy increases with in-
creasing frequency. Cystine had the lowest and struvite had the highest
relative permittivity at microwave frequencies as seen in Fig. 3(a). Al-
though the conductivity parameter was very low for all stone types, the
conductivity of struvite was relatively higher than the other two types.

5.2. Cole–Cole fitting results for renal calculi dielectric properties

The Cole–Cole parameters were fitted to the measured relative
permittivity and conductivity of each stone sample by utilizing GNR
method. Two examples of the Cole–Cole fitting to median measure-
ments of each type are shown in Fig. 4(a) and Fig. 4(b). A good
agreement was achieved between the median of the measurement data
and the Cole–Cole fitting. A comparison of the fitted Cole–Cole para-
meters is given in Table 3. The error parameter of Euclidean distance
was lower than the threshold value. One can classify the renal calculi
just by looking into the Cole–Cole parameters or median measurements.
However, the measurement system suffered from low measurement
accuracy and low repeatability rates. Therefore, machine learning al-
gorithm was implemented to compensate for the errors stemming from
the measurement methodology and other systematic errors.

Fig. 3. Median dielectric property measurements of renal calculi samples with
variability bars, (a) median relative permittivity measurement, (b) median
conductivity measurement.

Table 2
Median of dielectric property measurements for calcium oxalate, cystine, and
struvite.

Frequency Calcium Oxalate Cystine Struvite

(GHz) ′ε σ (S −m 1) ′ε σ (S −m 1) ′ε σ (S −m 1)

1.0 2.3525 0.0045 2.6335 0.0190 3.3131 0.0199
2.0 2.3067 0.0079 2.5113 0.0481 3.3779 0.0269
3.0 2.3271 0.0091 2.3991 0.0760 3.2421 0.0265
4.0 2.2392 0.0113 2.3241 0.1342 3.1628 0.0275
5.0 2.2771 0.0150 2.3675 0.1498 3.3729 0.0303
6.0 2.3226 0.0161 2.1708 0.1491 3.2165 0.0349

Fig. 4. Comparison of calculated median values with ColeCole fittings, (a) re-
lative permittivity comparisons for calcium oxalate, cystine, and struvite sam-
ples, (b) conductivity comparisons for calcium oxalate, cystine, and struvite
samples.
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5.3. Renal calculi classification results with kNN

We have tested our method on a data set collected from 35 calcium
oxalate, 35 cystine, and 35 struvite renal calculi samples. Training and
testing data were selected by applying 10 fold cross-validation to avoid
over-fitting and to achieve unbiased classification results. Calculated
performance measures are demonstrated in Fig. 5.

As seen from Fig. 5, all performance measures of this classifier
reached to 100% in at least one fold. Among 10 folds, the minimum
obtained values of accuracy, sensitivity, specificity, precision, recall,
and F1 score were, respectively, 90.00%, 80.00%, 85.71%, 75.00%,
87.50%, and 88.89%. These results are quite promising for categorizing
the renal calculi based on their dielectric properties. By further testing
the model with a larger data set, a new renal calculi analysis tool could
emerge that can be utilized in hospitals, research centers, and labora-
tories.

6. Discussion

The prevalence of renal calculi and the types depend on the geo-
graphic, climatic, and dietary conditions as well as the race, sex, and
age of the patient. Therefore, the availability of these samples depends
on the patients visiting a clinic, the location of the clinics, and also the
severity of the disease (e.g., the renal calculi can be disintegrated in
vivo by response to a nonsurgical treatment such as oral medications
and extracorporeal shockwave lithotripsy (ESWL) allowing it to be
passed naturally). Uric acid is a relatively rarely diagnosed renal calculi
type that composes 10% of all renal calculi types globally, and the
prevalence varies geographically, being 2.1% in Texas, USA, and 15.8%

in Okinawa, Japan [29]. More importantly, uric acid is known to be
soluble in high pH urea. Since it is known to be responsive to non-
surgical treatments, for patients with uric acid renal calculi, oral che-
molysis is generally prescribed [30,31]. Most urolithasis patients with
uric acid respond well to oral medications. In some cases, this treatment
is accompanied with ESWL and PCNL, and PNCL is preferred when the
uric acid sample is larger than 2 cm [32]. Due to the high solubility of
uric acid renal calculi, the uric acid samples were not available at the
hospital. Hence, uric acid was not included in this work.

To compare the performance of the kNN for three renal calculi types
with other machine learning algorithms, we applied the ANN method to
the problem of classification of renal calculi. The ANN algorithm mi-
mics the neural structure of the brain and has been utilized in other
studies for different tasks, including but not limited to autonomous
driving and medical diagnostics. Briefly, the ANN algorithm employs
concatenated artificial neurons, where weighted artificial neuron inputs
mimic the dendrites, node represents the soma, and the weighted
output represents the axon in a biological neuron. The nodes sum the
weighted inputs and pass them from an activation function that can be a
linear, step, or sigmoid function. In this study, a tangent sigmoid
function was used as an activation function. Then the output was taken
and passed to another layer of concatenated neurons. The ANN algo-
rithm works by optimizing the weights of the inputs and outputs via
gradient descent backpropagation. The number of layers and inputs
depend on the neural net, and for this work, it was determined via trial
and error. In this work, we employed one hidden layer with 15 neurons.
The input chosen for the neural network was the Cole–Cole parameters
along with bias, and the outputs of the network were the three classes of
calcium oxalate, cystine, and struvite. The inputs were normalized in
the range of (−1, 1) since the normalization enabled fast convergence.
Finally, the chosen learning rate was between 0 and 1, adjusted along
with the weights through back propagation during training. The
training and testing were then performed, and the results of the ANN
algorithm, as well as the kNN results, are given in Table 4.

As seen in Table 4, kNN outperformed the ANN, especially when the
F1 score is considered. The performance of the ANN could be further
optimized by adopting different activation functions or even by adding
layers to the neural network. Ultimately, we expect that the

Table 3
A sample of Cole–Cole parameters fitted to the median of each stone type.

Cole–Cole parameters ∞ε εs τ α σs (S −m 1) error

CaOx 1.96 12.84 1.41e-06 0.73 8.11e-05 0.0151
Cystine 1.93 16.78 6.04e-07 0.62 0.0071 0.0111
Struvite 3.50 14.66 1.80e-07 0.39 0.0365 0.0099

Fig. 5. Performance measures of the kNN for classification of all renal calculi samples. Error bars show the maximum and minimum values of performance measures
among the 10 folds used in testing.
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performance of both algorithms would improve with a significant in-
crease in sample size. One should also consider that the computational
cost of kNN is higher for more data.

When we analyzed the dielectric property data, the median relative
permittivity of struvite was approximately 1 unit higher than cystine
and calcium oxalate for all frequencies between 0.5 GHz and 6 GHz, as
shown in Fig. 4(a). Therefore, we can state that when the relative
permittivity was considered, struvite separated quite well from the
other two classes. Similarly, it can be seen from Fig. 4(b) that the
conductivity of the cystine separated well from the other two stone
types. Since the kNN algorithm was based on closest ten neighbors,
permittivity and conductivity could be two parameters that may help
separate the classes.

Finally, to the best of authors’ knowledge, classification based on
the dielectric property measurement has not been previously explored
in the literature, except in Ref. [27], where a binary classification al-
gorithm SVM is applied to the collected dielectric property data, and
malignant hepatic tissues were classified with a 99.2% F1 score. As the
dielectric property contrast grows, the performance of the machine
learning algorithms slightly increases. However, we can clearly state
that despite the relatively low dielectric property contrast in this work
(relative permittivity discrepancy between the malignant and healthy
hepatic tissues in Ref. [27] was 5–10 units), the machine learning al-
gorithms were very effective for classifying discarded renal calculi.

7. Conclusion

A microwave dielectric property based kNN renal calculi classifi-
cation method was presented in this work. Dielectric properties of three
different renal calculi types were measured with the slim-form open-
ended coaxial probe technique between 500MHz and 6 GHz, with
100MHz frequency steps. The medians of the dielectric properties were
calculated, and an inherent dielectric property discrepancy was ob-
served in the different renal calculi types. The Cole–Cole parameters
were then fitted to measurement data, which aided in the representa-
tion of dielectric property measurement data with only five parameters.
The kNN algorithm was then employed for classification of the renal
calculi, and the Cole–Cole parameters were used for training and testing
the algorithm. The benefits of the proposed method include rapid
measurement, minimal sample preparation requirements, and an au-
tomated decision making mechanism that can eliminate personnel
costs, decrease diagnosis time, and decrease equipment costs. It should
also be noted that the system itself is simple and requires very little
output power. In addition, unlike X-rays, no special chamber is required
to confine the low-power microwaves.

A good performance (98.17% accuracy) was achieved for renal
calculi classification with a kNN model based on the Cole–Cole para-
meters. However, there could still be some error sources that may de-
crease the method's performance, which can be categorized as mea-
surement errors, data analysis errors, or the diversity of samples.
Measurement errors can be due to an air gap between the samples and
aperture of the probe. Data analysis errors can stem from the errors that
emerge due to representation of the data with few parameters. For
example, Cole–Cole parameters that can represent a curve are not

necessarily unique, and different combinations can satisfy the require-
ments. Finally including a more diverse data set containing more than
105 renal calculi samples could improve performance of the machine
learning algorithm.
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